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Abstract

This paper describes a new approach for IC layout and compaction. 'I'he
compaction problem is translated into a mixed integer-linear programming problem
of a very special form. A graph based optimizatiez algorithm is used to solve the
resulting problem. An experimental program that uses the above techniques is
described. The program could be used either as an aid to hand layout or as the
bottom part of an automatic layout generation program. ... .

The preparation of this paper was supported in part by the l)efense Advanced
Research Projects Agency Grant No. N00014-82-K-0193, in part by ONR Grant No.
N00014-80-C-0197, and in part by Defense Advanced Research Projects Agency
Grant No. N00014-78-C-0164.
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1. Introduction

One of the most time consuming and error prone parts of custom integrated
circuit design is low level cell layout. The logic designer can design a topological
layout of a digital circuit in the form of a "stick diagram" [Mead & Conway 1979;
Williams 19771 quite rapidly. However, the translation of this design into an actual
layout is tedious and error prone. Moreover, the same stick diagram can be rmapped
to a mask level layout in many different ways. On different occasions it is desirable

.to layout the same functional block differently. For example, the aspect ratio of the
block might need to be changed so it would fit other parts of the design, or transistor
sizes might need to be changed depending on the "fanout" load they have to drive.

Having a library of cells in stick diagram form together with a set of procedures
to translate them into layout is much more flexible and therefore more useful than a
standard cell library. The cells could be scaled automatically according to fan in and
fan out considerations. Their shapes could be altered automatically to fit other parts.
Moreover changes in design rules will not render the cells obsolete.

Several algorithms that translate stick diagrams into layout have appeared ill the
literature [Williams 1978; Dunlop 1978; Hsueh 1979a]. However, these algorithms
are heuristic and ad hoc. Our approach is to translate the layout compaction problem
into an optimization problem.

The compaction problem is stated as a minimization problem; that is,

find the minimum of the area function subject to linear and nonlinear constraints.

The optimization problem resulting is a mixed integer linear programming
problem of a very special kind. The integer variables are 10,11 decision variables. [or
every fixed set of decision variables, one needs to solve two independent longest-path
problems, one for the horizontal direction and the other for the vertical one. I[he
interaction between the horizontal and vertical compaction is via the integer decision
variables. More details on the problem formulation are given in Section 2.

The constraints come from geometrical design rules, from connectivity
information and possibly from user specified constraints.

The ability to specify additional constraints to the problem is very useliil. I-or
example, when one designs a cell that is to be replicated many times (most popular
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example is the shift register cell in Mead & Conway), it is important to be able to
specify that the center of an input node would be at the same height as the center of
a given output node. Using our technique, it is easy to compact cells in one direction
while keeping the other dimension fixed. This feature is useful when one makes cells
fit one another. Moreover, by manipulating the objective function it is possible to
influence the final shape of the compacted cells.

We would like to stress that our compaction scheme is truly a two-dimensional
compaction. Previous methods mentioned in the literature [Williams 1978: Dunlop
1978; Hsueh 1979a] use two one-dimensional compaction schemes.

The circuit compaction problem is made of three parts:

1) Translation of stick diagrams into an optimization problem.

2) The solution of the optimization problem

3) Making modifications to the stick diagrams and mathematical optimization to
try and improve the layout. For example, inserting jog points or symbol rotations.

In Section 2, we discuss the problem formulation and the translation from stick
diagrams to the mathematical optimization problem. In Section 3, we describe the
branch and bound technique we use to solve the optimization problem. In Section 4,
we give examples and some data about the experimental program we have
developed.

2. Problem Formulation and Constraint Generation

Stick diagrams are a well known symbolic form for describing integrated circuits
(see [Williams 1977; Mead & Conway 19791). Stick diagrams provide a topological
description of the circuit specifying transistor size and type, the connecting lines, the
layers they are made of and their connections to other lines or transistors. Loosely
speaking, the layout is made of hard fixed-shape cells. Cells are pull-up and pull-
down transistors, pass transistors, capacitors, and contacts. Interconnecting these cells
are rubber-band like lines that could be stretched and contracted along the horizontal
or vertical axis, but have a fixed width. The width of lines is either the default
minimal width or larger.

In our system, the input is a CIF file. Each transistor or contact is ai instance of a
predefined symbol from a library. Interconnecting these cells are line segments. 'ach

., ... ,,.'' .,-,' , .... . *,"'- " ,',* * ,,.. ---' .n. -. . '.- .' '.. .., . - ,. .,- . - - -,. --- -.,-..--"-" ."'. " 7*.'.-. -- .- .-.--- .- ': -. .'
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fine segment is terminated either by touching a symbol or another line segment or by
touching the outside boundary of the global cell. By convention, lines that are drawn
with width less than or equal to the minimal width are assumed to be of minimal
width and lines that are wider are assumed to be constrained to be the width that
they are drawn at. All line segments are either horizontal or vertical. All vertical or
horizontal line segments stay vertical or horizontal respectively, under the
compaction process. Symbol orientations stay the same, too. ligure I shows an
example of the input to the system.

Informally, the circuit compaction problem is as follows: Assume that the lower
left corner of the main symbol is at the origin. Specify the centers of all cells. The
horizontal coordinate of each vertical line segment, the vertical coordinate of the
center of each horizontal line segment, and the length of each line segment such that
all geometrical design rules are satisfied and the connectivity of the original circuit is
not altered.

Geometrical design rules "come in three varieties, separation rules, line-width
rules, and overlap rules. Since all transistors and contacts are predesigned, overlap
rules are automatically satisfied. Line-width rules are built-in; that is, the width of
each line is computed and is assumed to be fixed. Line-width enters into the
calculations as constants in the constraint generation part.

The compaction problem is translated into a mixed linear-integer programming
problem with a nonlinear objective function, namely the area of the compacted cell.

The linear constraints come from distance and connectivity requirements between
the various components of the circuit. Although the problem could be solved as a
general mixed integer programming problem, doing so would be very inefficient and
expensive. The problem we actually solve is formulated as a graph problem. All
linear constraints are encoded as arcs on a graph. For example, the encoding of the
distance requirement between a poly-silicon line and a poly-solicon-metal contact cell
is shown in Figure 2.
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Figure 2: A simple arc constraint

Now both xI and x2 are nodes in the graph with an arc with weight 5 in between.
We construct two graphs, an X-graph and a Y-graph. The nodes in the X graph are
the X coordinates of all the center points of the symbols and the centers of vertical
lines. Similarly the nodes in the Y-graph are the Y coordinates of the symbols'
centers and the horizontal lines.

The integer decision variables come from the interaction of corners. (See ligtre
*3.)

(xl, yl)

dl

(x2, y2)

Horizontal Graph OR Vertical Graph
x2. xl >dl yl - y2 >d2

Figure 3: Dual-arc Constraints

'aI. i . . . . .. . ,,.... ... .. .... ,,.--... . . .. . . . .• .-.. ....... . . ..
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For each pair of constraints, there is a decision variable. Its value determines
whether the X arc or the Y arc will be active in the corresponding graph. The above
pair of constraints is non-linear because of the OR function and the feasible region is
non-convex. The constraints could have been made linear by a priori choosing one of
the constraints and dropping the other. This however will reduce the size of the
feasible region and will result in inferior compaction. Figure 2 illustrates a case that
gives rise to a single arc constraint and Figure 3 illustrates a case that produces pairs
of constraints.

Another type of constraints come from connectivity requirements. In the course
of compaction, one has to maintain connections between the lines and the
corresponding symbols. A connection point between a line and a symbol does not
have to be fixed. It can slide along the edge of the connecting layer, as long as it does
not violate line-width or distance rules. The connectivity requirement is coded as a
pair of inequalities. This time the pair is coded as two arcs between the same two x
nodes or y nodes. For an example, see Figure 4.

1x2-xl I<d
i.e. -d -d

xl-x2 > -d
x2-xl >-d

i dl l
xl x2 xl

Figure 4: Connectivity constraints

As we shall see later, the connectivity requirements complicate the longest path
algorithm we use, since the graph is no longer acyclic.'4
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Problem Formulation

Let us now introduce some notation and definitions:

There are two graphs Gx and G that encode the set of constraints. one for
horizontal constraints, Gx, and one for vertical constraints. Gy.

Gx = {X, Ex. Wxj is a directed graph. X = {xi} is the set of nodes in the graph,
one for each symbol instance, one for each vertical line and two special nodes sx (the

source) and tx (the sink). sx corresponds to the left boundary of the cell and tx
corresponds to the right boundary of the cell. An arc is put between sx and all
symbols and vertical lines that are visible from the left side of the cell. Similarly arcs

are put between all symbols that are visible from the right and the sink node tx.

= xi, xj> I xi , xj E X} is the set of arcs in the graph. one arc for each
inequality. The set of inequalities Ex is divided into three sets.

.-. Ex = A. u Rx u Dx.

Ax is the set of simple arcs. These arcs correspond to simple horizontal
constraints. Rx is the set of vertical intra-group arcs. The arcs in R are divided into
groups. Each vertical intra-group corresponds to a collection of symbol instances that
are connected by vertical lines. The arcs in these groups correspond to connectivity

constraints. They come in pairs (as was shown in Figure 4). Figure 5 shows an
example of a vertical group and the corresponding graph.

Horizontal graph

,[

* S 4 (~~4

'Fu

Figure 5: A Vertical Group
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Dx is the Set Of arm that correspond to horizontal constraints that have a dual
vertica co0nant. Such constats are illustrated in Figure 3.

W1 is a set of weights.

Wx= jwXjj I <xi, Xj> E Ex. wxjj E 1

EachL arc in the set Ex has a weight attached to it, corresponding to the horizontal
distance requirements.

The graph Gy and the sets Ay, Rb,, Dy, are defined in an analogous way to Gx
Ax, Rx, Dx respectively by interchanging horizontal and vertical axes and changing x
to Y.

In addtion to the two graphs, there is a set of decision variables 1. Each decisiona
variable di. corresponds to apairf arcs exi, c)'1>, exi E Dx c)'1 E I). BlY
construction, D. and Dyhave the same number of arcs. Each arc in 1). corresponds
to one and only one arc in Dy. Each decision variable can take the values 10,11.

Ite optimization problem:

For each node xi e Gx and yi E Gy, we assign values xi and yi respectively. (We
use the node name and its value interchangeably, hopefully without confusing the
reader).

The vector of values z = <x, Y, d> is said to be feasible if the following conditions
are satisfied.

For each arc e EA u Rx;e = i, xj>

I - 'ijaWu

Similarly, for each arc e C Ay ufy; e = yi, yj>

)'i -Yj 2: wYb

and for each diC I

*1 A. w 1 if d1. =

yI - Yj k wyij if di 0
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where d, corresponds to the pair of dual arcs (exij, eYi).

Let 1 = 1z I z = (x, y, d> ; z is feasible)

be the set of feasible points. Our problem is

Problem 1:

[min f(x, y) .1
z80

f(x, y) is the objective function. Ordinarily the objective function is the area occupied
by the cell. In that case f(x, y) = (tx - sx) (ty - Sy).

It is possible, however, to manipulate the objective function in order to get
certain effects. For example if compacting in the horizontal direction is more
desirable than compacting in the vertical one, f = (tx - Sx) (ty - Sy) + C(tx - sx)

with large C could be used.

The compaction and layout generation has been formulated as a graph
minimization problem. The task at hand therefore is to translate the stick diagram
into the graph form, solve the minimization problem, and then translate the solution
into an actual layouL In this section we are going to give some details about the stick
diagram to graph problem translation. The algorithm used for solving the graph
minimization problem is given in Section 3. Once the minimization problem is
solved, the layout generation part is straightforward.

At first sight, the translation from the stick diagram to a graph problem looks
easy. Connectivity constraints can be generated by looking at the two ends of each
line. The difficulty arises in the distance constraint generation. First, pieces of circuits
that are on the same electrical node and are on the same layer do not have to be
constrained. This is solved by doing electrical network extraction as part of the
bnanslation.

Second, in principle each piece of circuit can interact with any other piece of
circuit and therefore a constraint has to be put between the two. In reality, the
interaction between different pieces is very local. Although it would not be "wrong"
to put constaints between pieces of circuits that do not interact (the solution of the
resulting problem will still be correct), clearly it is undesirable to do so. Using more

' ' / .' ,- i¢ e , , ,.-. ,,,_;e ,.., -,-..,:.. -..... ~ .'... - . ... '... ..... . ... . • .
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constraints than necessary requires more space and more time for the solution.
Finding the smallest number of constraints necessary for the compaction problem
seems to be very hard. Our approach is to try and limit the number of extraneous
constraints but not necessarily to find the minimal set of constraints. After staring a
while at some integrated circuits, one realizes that the main reason that pieces of
cirucuits do not interact is the fact that circuits tend to form small compartments.
One can think of the pieces of circuits, transistors, lines, and so on as the walls of the
compartments and the space in between as the area that makes the compartment.
Two pieces of circuit that do not share a compartment could not possibly interact

.4 since compaction leaves the topology of the circuit invariant. Since there are no
distance restrictions between metal and the other layers (poly, diffusion implant), one
needs to construct two kinds of compartments, one for metal and one for the other
layers (See Figure 6). A scan-line based "ponds and islands" algorithm is used to

identify the compartments and to group the pieces that make the compartment walls.

3. Methods for Solving the Mathematical Problem

In the previous section a detailed description of the graph optimization problem
to be solved was given. A fuil description and analysis of the solution methods and
algorithms one could use for solving the above problem cannot be given here- it will
be reported elsewhere [Watanabe]. We are, however, going to outline the major ideas

and algorithms that are used to solve the problem.

Problem 1 is made of two parts - an integer part and a graph part. i.et d be a
vector of decision variables d = <d1, ..., d111> di E (0,11. Clearly d can take 2111
different values. For each fixed value of d, say d0, one has two graphs

gx(do) = {X, Ex(do), WJ and gy(do) = [Y, Ey(do), WyI. gx(do) is a subgraph of
Gx and gy(do) is a subgraph of Gy. The arcs in gx(do) are all the arcs in Ax U Rx

and the set of arcs in Dx that corresponds to the components of do that are equal to
1. That is,

Ex(do) = x U Ax U Dx (do)

where Dx(d0) = lei I ei E D. and di = 11

Similarly, Dy(do) = {ei I ei E Dy and di = 01.

A few observations are in order:

'•*~ ~ -.-* x .~ *--- .* " *. "* . " • 2... -..,.., --,~ -a .- ..-. ... .. , -. .,, " .**,
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1) For each fixed value of d one has two separable graph problems. one for the x-
variables and one for the y-variables.

2) Since the objective function is monotone in x and y, each one of the graph
optimization problems is simply the longest path algorithm.

3) Although the graphs G. and Gy are not acyclic, they are "almost" acyclic.
- Only a simple modification of the longest path algorithm is needed.

4) If dx1 is different from dx2 only in one component, say dil = 1 and di2 = 0,
then gx(d 1) is different from gx(d 2) only by one arc. Namely, gx(d 2) is obtained from
gx(dl)2 by removing the arc that corresponds to the decision variable di. Similarly
gy(d 2) can be obtained from gy(d 1) by adding the arc that corresponds to di.
Therefore, if one has solutions for the longest path problems for gx(d L) and gy(d),
finding the longest path solution for gx(d2) and gy(d 2) could be done by updating the
longest path solution at hand with fewer steps than otherwise will be required.

The algorithm used to find the best decision variables combination is "branch
and bound" (see Qarfinkel and Nemhauser [1972]). The "branch and bound"
technique is basically an exhaustive search by enumeration. The set of all possible
values of the decision variables can be thought of as a complete binary decision tree.
The leaves of the decision tree correspond to a fixed set of values of the decision
variables. Branch and bound technique is a depth first search for the best answer. At
each stage of going down the decision tree, one more 0-1 variable is being fixed. The

*main idea behind branch and bound is to compute at each stage a global upper
bound and a local lower bound for the subtree that is searched. Each upper bound is
a feasible solution. The lower bound is not. The moment a lower bound exceeds the
best upper bound that was found so far, the corresponding subtree can be igIored
since no feasible solution for that subtree will improve the global result.

Each lower bound is computed by dropping the constraints that correspond to
decision variables that have not been fixed yet. An upper bound is comptted by
picking a specific value for the decision variables that agrees with the set of decision
variables that have been fixed.

Branch and bound is a standard algorithm and will not be described here.
However, these observations are in order:

% m . * ' . " . " -% " - * ."* .. . . . . . .. •.- . * *• ,-
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1) The algorithm starts by computing an initial guess. The better the initial guess,
the better branch and bound performs. We use a heuristic method for finding the
initial guess. It has been observed that the initial guess yields a solution that is about
10% worse than the optimal one.

2) At each step of the branch and bound, an arc from the critical path of gx and
gy is removed. Therefore, if some decision variable corresponds to arcs that do not
become part of a critical path, that decision variable never becomes part of the
branch and bound tree.

3) The choice of where to branch next is arbitrary. We use a heuristic to decide
where to branch. In all cases tested so far, the optimal solution was found after few
branchings (ess than 100). However, verifying that a solution is optimal took a long
time. How exhaustive a search to make, however, could be set by the user.

4) By modifying the pruning procedure of the branch and bound algorithm, it is
possible to speed up the search tremendously but at the expense of perhaps finding
only a suboptimal solution. In our experience, even the initial solution is a good
suboptimal solution.

4.Implementation, Examples, Condusions

An experimental program to test our ideas was constructed. The program is
written in PASCAL The input to the program is written in CIF and the output from
the program is a CIF file. The program compacts NMOS stick diagrams using Mead
& Conway design rules. A decision was made not to provide a fancy user interface.
However, using CIF as the input/output language allowed us to use existing tools.
Although the program works only with Mead & Conway design rules for NMOS. it
can easily be adapted to other technologies and different design rules. Most of the
technology and process-dependent rules are in table form. Also, there are no
restrictions on the predefined library of cells. That set can have any user defined
cells.

Our initial experience with the program has been very encouraging. lirst, the
method used for constructing an initial guess yields very good results. In all cases
tested, the initial guess was within 10% of the optimal solution. Second, the heuristics
used in the branch and bound search worked very well. Even though the number of
decision variables can be large (100-1000 or more), the optimal solution is found

.- ,--. . . . . . . . . . .U.. . . . . . . . .
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quite fast, usually after less than 100 steps. Verifying that the solution is optiuial,
however, can be very expensive. Thousands of branch and bound steps may be
necessary. To date, a good stopping strategy, except limiting the number of branch
and bound steps, has not been found. Automatic insertion of jog points has not bcen
implemented as yet.

To illustrate the quality of compaction achieved, two "before and after" examples
" are given. The first example is a T flipflop. The input is given in Figure L. The result

is given in Figure 7. The optimum was found after 8 steps and it was verified at the
10th step. The program, running on a VAX 11/780 under UNIX, took 11.8 seconds
to produce the answer.

The second example, Figures 8a - 8b, is a priority queue cell [Kedein 19811. "he
optimal answer was found after 48 steps. However, thousands of steps were required
to verify that the solution was optimal. It might be of interest to note that the cell
was first laid out by hand. The result produced by the program was better than the
hand-crafted one. It took the program about 2 minutes, 11.4 seconds to find the final
answer, 42.2 seconds for preprocessing, 50.9 for finding first guess, and 38.9 seconds
for branch and bound.
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